1. 主页 > 教育资讯 >

一次函数与方程不等式教案获奖精选2篇

据自成学历信息网小编的了解,《一次函数与方程不等式教案获奖精选2篇》,原来具体内容是这样的。

教案是教师实施课堂教学的操作性方案,它重在设定教学的内容和行为,即:“教什么”。是整个课堂教学工作的重要组成部分。教案对于教师课堂教学有着重要的意义。以下是小编整理的一次函数与方程不等式教案相关内容,供大家参考借鉴,希望可以帮助到有需要的朋友,欢迎阅读与收藏。

一次函数与方程不等式教案1

教学目标:

知识与技能

1、初步掌握函数概念,能判断两个变量间的关系是否可看作函数。

2、根据两个变量间的关系式,给定其中一个量,相应地会求出另一个量的值。

3、会对一个具体实例进行概括抽象成为数学问题。

过程与方法

1、通过函数概念,初步形成学生利用函数的观点认识现实世界的意识和能力。

2、经历具体实例的抽象概括过程,进一步发展学生的抽象思维能力。

情感与价值观

1、经历函数概念的抽象概括过程,体会函数的模型思想。

2、让学生主动地从事观察、操作、交流、归纳等探索活动,形成自己对数学知识的理解和有效的学习模式。

教学重点:

1、掌握函数概念。

2、判断两个变量之间的关系是否可看作函数。

3、能把实际问题抽象概括为函数问题。

教学难点:

1、理解函数的概念。

2、能把实际问题抽象概括为函数问题。

教学过程设计:

一、创设问题情境,导入新课

『师』:同学们,你们看下图上面那个像车轮状的物体是什么?

函数数学教案2

教学目标

1.知识与技能

理解一次函数与一元一次不等式的关系,发展学生的认知体系.

2.过程与方法

经历探索一次函数与一元一次不等式的关系的过程,掌握其应用方法.

3.情感、态度与价值观

培养良好的数学抽象思维,体会本节课知识在现实生活中的应用价值.

重、难点与关键

1.重点:一次函数与一元一次不等式的关系.

2.难点:如何应用一次函数性质解决一元一次不等式的解集问题.

3.关键:从一次函数的图象出发,直观地呈现出一元一次不等式的解的范围.

教具准备

采用“问题解决”的教学方法.

教学过程

一、回顾交流,知识迁移

问题提出:请思考下面两个问题:

(1)解不等式5x+6>3x+10;

(2)当自变量x为何值时,函数y=2x-4的值大于0?

学生活动观察屏幕,通过思考,得到(1)、(2)的答案,回答问题.

教师活动在学生充分探讨的基础上,引导学生思考:“一元一次不等式与一次函数之间有何内在联系?”

思路点拨在问题(1)中,不等式5x+6>3x+10可以转化为2x-4>0,解这个不等式得x>2;问题(2)就是解不等式2x-4>0,得出x>2时函数y=2x-4的值大于0,因此这两个问题实际上是同一个问题,从直线y=2x-4(如图)可以看出.当x>2时,这条直线上的点在x轴的上方,即这时y=2x-4>0.

问题探索

教师叙述:由上面两个问题的关系,能进一步得到“解不等式ax+b>0”与“求自变量x在什么范围内,一次函数y=ax+b的值大于0”有什么关系?

学生活动小组讨论,观察上述问题的图象,联系不等式、函数知识,解决问题.

师生共识由于任何一元一次不等式都可以转化为ax+b>0或ax+b<0(a,b为常数,a≠0)的形式,所以解一元一次不等式可以看出:当一次函数值大(小)于0时,求自变量相应的取值范围.

教学形式师生互动交流,生生互动.

二、范例点击,领悟新知

例2用画函数图象的方法解不等式5x+4<2x+10.

教师活动激发思考.

学生活动小组合作讨论,运用两种思维方法解决例2问题.

解法1:原不等式化为3x-6<0,画出直线y=3x-6(左图),可以看出,当x<2时,这条直线上的点在x轴的下方,即这时y=3x-6<0,所以不等式的解集为x<2.

解法2:将原不等式的两边分别看作两个一次函数,画出直线y=5x+4与直线y=2x+10(右图),可以看出,它们交点的横坐标为2,当x<2时,对于同一个x,直线y=5x+4上的点在直线y=2x+10上相应点的下方,这时5x+4<2x+10,所以不等式的解集为x<2.

评析两种解法都把解不等式转化为比较直线上点的位置的高低.

三、随堂练习,巩固深化

课本P216练习.

四、课堂,发展潜能

用一次函数图象来解一元一次方程或一元一次不等式未必简单,但是从函数角度看问题,能发现一次函数、一元一次方程与一元一次不等式之间的关系,能直观地看到怎样用图形来表示方程的解与不等式的解,这种用函数观点认识问题的方法,对于继续学习数学是重要的.

五、布置作业,专题突破

课本P129习题14.3第3,4,7,8,10题.

声明:本站为成考自考学历交流信息网站,所有信息内容均收集于互联网,本网提供的信息仅供参考和非商业性学习目的,由于各方面情况的调整与变化,实际情况以当地权威机构部门、院校公布的信息为准。

联系我们

在线咨询:点击这里给我发消息

微信号:

工作日:9:30-18:30,节假日休息